Photocatalytic patterning and modification of graphene.
نویسندگان
چکیده
TiO(2)-based photocatalysis has been widely used to decompose various organic pollutants for the purpose of environmental protection. Such a "green" photochemical process can ultimately degrade organic compounds into CO(2) and H(2)O under ambient conditions. We demonstrate here its extended application on the engineering of single- or few-layer graphene. Using a patterned TiO(2) photomask, we have achieved various photochemical tailorings of graphene, including ribbon cutting, arbitrary patterning on any substrate, layer-by-layer thinning, and localized graphene to graphene oxide conversion. UV-visible spectroscopic studies indicate that the photogenerated, highly reactive ·OH radicals work as sharp chemical scissors. Being a solution-free, cost-effective, scalable, and easy handling technique, the presented photocatalytic patterning and modification approach allows for the versatile design and fabrication of graphene-based devices and circuits, compatible with current microelectronic technology, as demonstrated by this fabricated all-carbon field effect transistor (FET) array.
منابع مشابه
Synthesis and structural properties of Mn-doped ZnO/Graphene nanocomposite
Zinc oxide (ZnO) is a promising metal oxide semiconductor with various applications, especially in the photocatalytic destruction of environmental pollutants. However, this nanoparticle has some limitations, such as poor dispersion, aggregation, and a wide energy gap. As such, the doping of metal oxide semiconductor has been strongly recommended. Addition of manganese (Mn) has proven effective ...
متن کاملNanotitania composite assembled with Graphene oxide for Photocatalytic degradation of Eosin Yellow under Visible light
Visible light responsive Graphene oxide (GO) nanotitania composite was synthesized and its photocatalytic activity was investigated for the degradation of Eosin Yellow (EY). The nanocomposite was synthesized by organic solvent free-controlled hydrolysis of titanium tetrachloride (TiCl4) exfoliated with 10 wt. % (0.5 g) of the as prepared GO particles under ultrasonication through in-situ additi...
متن کاملSynthesis and investigation of structural, optical, and photocatalytic properties of BiFeO3/reduced graphene oxide nanocomposites
This study have been developed BiFeO3/reduced graphene oxide (BFO/RGO) nanocomposites by introduction of RGO in the structure of BFO nanoparticles in a short term ultrasonic treatment. The X-ray diffraction pattern and Fourier-transform infrared spectroscopy analysis reveal that the BFO/RGO composites were successfully synthesized. UV-visible absorption show that the introduction of RGO can eff...
متن کاملGraphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light
Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...
متن کاملApplication of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review
This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors. Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 8 شماره
صفحات -
تاریخ انتشار 2011